

# Trait modelling for stress tolerance in Indian mustard : Evidenced from seedling stage

G Kumawat<sup>1</sup>, ML Jakhar<sup>1</sup>, V Singh, DK Gothwal<sup>1</sup> and J Singh\*

ICAR-Central Soil Salinity Research Institute, Karnal 132001, Haryana, India <sup>1</sup>Sri Karan Narendra Agriculture University, Jobner 303329, Jaipur, Rajasthan, India \*Corresponding author: jogendra.singh@icar.gov.in (Received: 17 December 2022; Revised: 31 December 2022; Accepted: 05 January 2023)

#### Abstract

The current scanty knowledge about the physiological mechanisms underlying plants' ability to tolerate salt stress that hinders potential production of numerous crops, including mustard. To explore the traits and mechanism for salt tolerance in mustard, we used 250 stabilized  $F_{7.8}$  recombinant inbred lines (RILs) mapping population developed by crossing indigenous contrasting genotypes CS 614-1-1-100-13 (salt sensitive) × CS 56 (salt tolerant) and evaluated them under control and irrigated water salinity of EC<sub>iw</sub> 12 dS/m to characterize for growth, photosynthetic and ionic traits. Step wise regression revealed, instantaneous water use efficiency, transpiration rate and fresh weight of root together accounted for more than 93% of the overall variation in photosynthesis rate under salt stress condition, indicating their critical contribution to reducing salt stress. The salt tolerance index (STI) categorized 23 RILs as salt tolerant, 99 RILs as moderately tolerant and remaining 128 RILs were sorted as salt sensitive RILs. These identified salt tolerant RILs can be exploited for QTLs and gene discovery and serve as potential doners/future ready lines to combat abiotic stress and development of salt tolerant varieties of mustard.

Keywords: Mustard, RILs, photosynthetic traits, STI

#### Introduction

Salinity and sodicity stress damage an area of 932.2 mha worldwide, of which 6.73 mha are affected by these stresses in India (Metternicht and Zinck, 2003; Singh et al., 2014) however, this will be increased up to 16.25 mha by 2050 (Kumar et al., 2022b). Groundwater utilized for irrigation contains 32-84 percent salty or brackish water and the soil salinity build due to this irrigation results in an annual loss of 10 million ha of land, consequently adverse effect on the food basket. High salt stress leads to cellular osmotic stress, ion-specific toxicity, reduced plant growth and photosynthetic traits which ultimately lead to a minimal yield of the crop (Singh and Sharma, 2016). By improving crop tolerance to salt or by draining salt from the soil, this low yield in saline places can be combated (Kumar, 2014; Singh and Sharma, 2016). This tolerance is achieved in crop plants via different mechanisms such as maintenance of cell turgidity through the accumulation of osmolytes, ion exclusion from the root, ion compartmentation in vacuole, tissue tolerance and ionindependent tolerance.

Indian mustard, *Brassica juncea* (L.) Czern & Coss (AABB, 2n=36, Genome size: 1068 Mb) is a significant oilseed crop with wide adaptability (Kang *et al.*, 2021). Globally,

India ranked second in rapeseed-mustard cultivation after only China and third in production behind Canada and China (Kumari *et al.*, 2019). It ranks as India's third-largest edible oilseed crop after peanut and soybean, which accounts for 24.36% of the country's oilseed market among nine edible oilseed crop (Kumar *et al.*, 2022a). The amphidiploid species (*B. carinata, B. juncea and B. napus*) appear to be superior to the diploid species (*B. rapa, B. nigra* and *B. oleracea*) in terms of saline tolerance, as per several studies (Ashraf *et al.*, 2001; Ashraf and Mehmood, 1990).

Salt stress causes Na<sup>+</sup> and K<sup>+</sup> ion imbalance, by disrupting the Na<sup>+</sup>/K<sup>+</sup> ratio in leaves, salinity during the seedling stage has a deleterious impact on photosynthesis. The transfer of carbohydrates from source to sink is slowed down by this aberrant Na<sup>+</sup>/K<sup>+</sup> ratio, which also affects mustard growth. Due to restrictions on growth, seed yield is reduced by up to 60% in mustard (Singh *et al.*, 2019). The lowered rate of carbon absorption, assimilation and partitioning to seedlings during the initial stage of salt stress makes it more detrimental (Singh *et al.*, 2019). Ultimately, plant growth, photosynthesis rate and yield is reduced due to toxic salt stress levels (Pant *et al.*, 2022).

It's well-recognized that Brassica an acceptable

reclamation crop but introduction of salt mitigation or salt tolerance mechanisms into the Indian mustard crop proceeds slowly due to a lack of genetic variability, research or inadequate information in these areas. One of the main initiatives in Brassica development is cultivar improvement for saline tolerance. Therefore, the creation of salinity-tolerant Indian mustard cultivars with higher yields in the salt-affected semi-arid tropics will be more effective and efficient by integrating breeding, physiological, biochemical, novel omics as well as bioinformatics approaches studies (Pant et al., 2022). Our study included 250 RILs mapping population which were produced by crossing indigenous contrasting genotypes CS 614-1-1-100-13 (salt sensitive) × CS 56 (salt tolerant) of B. juncea. These RIL mapping population serve as mustard genetic resource to identify salt tolerance genotypes to combat salt stress for salt prone areas.

## Materials and Methods Study site

The experimental materials consisted of 250 stabilized  $F_{7:8}$  recombinant inbred lines (RILs) mapping population of Indian mustard developed by crossing indigenous sources of mustard; CS 614-1-1-100-13 (salt sensitive) an advanced breeding line developed at ICAR-CSSRI, Karnal with gamma-ray irradiation treatment and stabilized for  $M_6$  generation (Sharma *et al.*, 2008) and CS 56, a national released high yielding salt tolerant variety. These 250 RILs along with parents grown during consecutive *Rabi* seasons 2020-21 and 2021-22 under control and irrigation water salinity ECiw 12 dS/m in the pots with three replications at ICAR-CSSRI, Karnal (29°43'N, 76°58'E; 245 m above the average sea level) (Singh *et al.*, 2020) (Fig. 1).



Fig. 1: Location of experimental site

## **Experimental details**

The RIL mapping population was cultivated in pots of 20 kg capacity in sand culture. For the salinity environment, irrigated with saline water of  $EC_{iw}$  12 dS/m throughout the experiment. The chloride and sulphate salts of Na<sup>+</sup>, Ca<sup>2+</sup> and Mg<sup>2+</sup> to keep the SAR (Sodium absorption ratio)

within the permissible limits used for the preparation of  $EC_{iw}$  12 dS/m saline irrigation water. Prior to planting, seeds were surface sterilised for 5 minutes in a solution of 10% sodium hypochlorite before being rinsed with distilled water. Twenty seeds of each RIL were planted in a plastic pot filled with properly washed river sand at a depth of one centimetre. Each pot's bottom was dug out to allow any extra water to drain. The pots were set up in a factorial experiment using a completely random block design. The pots were watered with Hoagland's solution, a nutrient solution and kept at maximum field capacity until the seedling stage. Throughout the experiment, salinity levels were kept constant by draining the salt out of the pots every day (Singh *et al.*, 2019).

## Data collection Growth attributing traits at the seedling stage

Initially, randomly ten seedlings (15 days old) from each RIL under control and salinity  $EC_{iw}$  12 dS/m conditions were uprooted and washed with distilled water to record the fresh weight (mg) of leaves, stems and roots. The oven-dried plant samples at 55-65 °C for 5-6 days were used for reading of dry weight (g) of the leaf, stem and root.

## **Photosynthetic traits**

Randomly selected three plants from each genotype under control and EC<sub>iw</sub> 12 dS/m salinity regime were used for photosynthetic data at the seedling stage *i.e.*, Photosynthesis rate (Pn; µmol m<sup>2</sup> s<sup>1</sup>), transpiration rate (E; mol m<sup>2</sup> s<sup>1</sup>), stomatal conductance (gS; mol m<sup>2</sup> s<sup>1</sup>), intracellular CO<sub>2</sub> assimilation (Ci/Ca), Instantaneous water use efficiency (i WUE; µ mol CO<sub>2</sub>/m mol H<sub>2</sub>O) and intrinsic water use efficiency (in WUE). Pn and other gas exchange parameters were measured on the fully expanded leaf of three representative plants per RILs using a portable photosynthetic system: infrared gas analyzer LI-6800XT [Li-COR, USA) (Singh et al., 2019). All the above traits were measured between 10:00 and 12:00 AM in sunlight under these weather conditions; PAR ~700  $\mu$ mol m<sup>-2</sup>s<sup>-1</sup>, temperature ~ 25±1°C relative humidity ~ 70% and air  $mol^{-1}$ . CO<sub>2</sub> 355 The K<sup>+</sup> µmol and Na<sup>+</sup> concentration of plant sample measured with Inductively coupled plasma-optical emission spectrometry ICPE-9800 (Shimadzu, Japan) after checking the standards (Piper, 2019).

### Statistical analysis

The statistical analyses regression and STI was carried out for all the studied seedling stage traits using the *STAR* 2.0.1 (IRRI, 2014) and MS Excel.

Stress tolerance index (Fernandez, 1992) =  $\frac{Ys.Yp}{Yp^2}$ 

Where, Ys and Yp are the mean yield of genotypes under stress and non-stress conditions, respectively. The RILs with high STI values will be salt stress tolerance Result and discussion

Twenty-one traits were further sub-categorized into six growth attributing traits [fresh weight (root, stem and leaves)], dry weight (root, stem and leaves)], six photosynthetic traits and nine ionic traits (Na<sup>+</sup>, K<sup>+</sup> and Na<sup>+</sup>/K<sup>+</sup> of root, stem and leaves) were used for trait modeling and characterized salt tolerant RILs at the seedling stage.

#### Results and Discussion Mustard traits prioritization under salinity

All feasible and stepwise regression analyses were carried out to ascertain the impact of component variables on Pn (dependent variable) (Shannon *et al.*, 2000; Sharma and Sinha, 2012). All conceivable regression analyses revealed that gS, E, *i*WUE, *in*WUE, RFW and LFW significantly influenced the Pn of mustard leaves under salt stress, while the remaining traits did not (Table 1). Therefore, during the stepwise regression method, these remaining non-significant traits were eliminated. According to the results, *i*WUE, E and RFW together accounted for more than 93% of the overall variation in Pn under salt stress conditions. Additionally, Pn variation was substantially influenced by *i*WUE, E, RFW, *in*WUE, gS and LFW with cumulative  $R^2 = 94.36$ , which could be best fitted since it reflected the least Mallow's Cp criteria. The following equation was created to estimate the projected Pn under saline conditions based on regression coefficients of the relevant traits (Table 2):

Predicted photosynthetic rate =  $-17.05 + (3.8 \times E) + (gS \times 13.13) + (2.44 \times iWUE) + (0.08 \times inWUE) + (-0.02 \times RFW) + (-0.01 \times SFW) + (0.23 \times LFW) + (0.01 \times LK15).$ 

Hence, these traits play major in contribution to enhance photosynthetic rate under saline condition. By targeting these traits, further research will be extending to vegetative and harvesting stage to combat salt stress.

# Characterization of RILs based on salt tolerance index

To characterized tolerant and sensitive RILs over the environment, the salt tolerance index (STI) was calculated. Based on STI, RILs were characterized into three groups *i.e.*, highly tolerant (STI e"1), tolerant (STI = 1-0.75), moderately tolerant (STI = 0.75-0.50) and sensitive RILs (STI d"0.50). Total 24 RILs were selected as highly salt tolerant (RIL24, RIL32, RIL74, RIL87 and RIL73), 99 RILs were sorted as tolerant (RIL14, RIL31, RIL13, RIL95 and RIL142), 109 RILs as moderately tolerant while remaining 18 RILs were characterized as sensitive which score STI <0.50 (RIL170, RIL247, RIL225, RIL228 and RIL223) over the environment (Table 3 and Fig. 2). The salt-tolerant

| Dependable variable | Variable  | Estimate | Standard I | Error (SE) | t value | Pr(> t ) |
|---------------------|-----------|----------|------------|------------|---------|----------|
| Pn                  | Intercept | -17.05   | 0.71       | -23.97     | 0.000   |          |
|                     | E         | 3.80     | 0.19       | 19.60      | 0.000   |          |
|                     | gS        | 13.13    | 1.95       | 6.72       | 0.000   |          |
|                     | iWUE      | 2.44     | 0.13       | 18.93      | 0.000   |          |
|                     | inWUE     | 0.08     | 0.01       | 6.66       | 0.000   |          |
|                     | RFW       | -0.02    | 0.01       | -3.85      | 0.000   |          |
|                     | SFW       | -0.01    | 0.00       | -1.53      | 0.127   |          |
|                     | LFW       | 0.23     | 0.14       | 1.72       | 0.087   |          |
|                     | LK15      | 0.01     | 0.00       | 1.78       | 0.077   |          |

Table 1: Salinity stress tolerance's regression coefficient, standard error and significance of the prioritized attributes

Table 2: Traits modelling for salinity tolerance through multiple linear regressions approach

| Variables                                                                                                           | C(p)    | R-square | Adj R-sq |
|---------------------------------------------------------------------------------------------------------------------|---------|----------|----------|
| iWUE                                                                                                                | 2845.40 | 29.19    | 28.90    |
| E <sup>+</sup> <i>i</i> WUE                                                                                         | 56.81   | 93.07    | 93.01    |
| E <sup>+</sup> <i>i</i> WUE <sup>+</sup> RFW15DAS                                                                   | 47.63   | 93.32    | 93.24    |
| GSW <sup>+</sup> E <sup>+</sup> <i>i</i> WUE <sup>+</sup> <i>in</i> WUE                                             | 19.57   | 94.01    | 93.92    |
| GSW <sup>+</sup> E <sup>+</sup> <i>i</i> WUE <sup>+</sup> <i>in</i> WUE <sup>+</sup> RFW15DAS                       | 8.49    | 94.31    | 94.20    |
| GSW <sup>+</sup> E <sup>+</sup> <i>i</i> WUE <sup>+</sup> <i>in</i> WUE <sup>+</sup> RFW15DAS <sup>+</sup> LFW15DAS | 8.40    | 94.36    | 94.22    |

| Table 3:        | Groupi   | ng of mu | stard RIL      | s based      | on salt to     | olerance i       | ndex (S | TI) of ph | otosynthetic rat         | е           |                           |       |      |                            |            |  |
|-----------------|----------|----------|----------------|--------------|----------------|------------------|---------|-----------|--------------------------|-------------|---------------------------|-------|------|----------------------------|------------|--|
| Highly to       | olerant  | RILS     |                |              | Tolerar        | nt RILs          |         |           | Modera                   | tely toler: | ant RILs                  |       |      | Sensitive RII              | S          |  |
| (ST             | (I = >1) |          |                |              | (STI = ]       | 1-0.75)          |         |           | (STI                     | = 0.75-0    | 50)                       |       |      | (STI = <0.50)              |            |  |
| RILS            | ILS      | Rank     | RILS           | STI          | Rank           | RILS             | STI     | Rank      | RILS STI                 | Rank        | RILS S7                   |       | Rank | RILS STI                   | Rank       |  |
| КII 24<br>рт 27 | 1.26     | - c      | RIL14<br>DI 21 | 66.0<br>00 0 | 28             | RIL121<br>DI 141 | 0.85    | 51<br>21  | RIL128 0.74<br>DT 8 0.74 | 124         | RIL169 0.0<br>DII 187 0.0 | ¥ 2   | 6    | RIL201 0.49<br>рт 777 0.40 | 233<br>724 |  |
| RII 74          | 1.18     | 1 m      | RIL13          | 66 U         | 07 F2          | RIL141           | 0.0     | 6 F       | RIL 166 0.74             | 126         | RIL 65 0.6                | र ज्य | 8 2  | RIL180 0.49<br>RIL180 0.48 | 235<br>235 |  |
| RIL87           | 1.17     | 94       | RIL95          | 0.97         | i 81           | RIL97            | 0.84    | 78        | RIL184 0.74              | 127         | RIL154 0.6                | : 4   | 8    | RIL175 0.48                | 236        |  |
| RIL73           | 1.15     | 5        | <b>RIL</b> 142 | 0.97         | 29             | RIL34            | 0.84    | 6L        | <b>RIL70</b> 0.74        | 128         | RIL61 0.0                 | 2     | 83   | RIL155 0.47                | 237        |  |
| RIL77           | 1.15     | 9        | RIL78          | 0.97         | 30             | RIL96            | 0.84    | 80        | RIL118 0.74              | 129         | RIL148 0.0                | 23    | 28   | RIL183 0.46                | 238        |  |
| <b>RII 25</b>   | 1.13     | 7        | RIL56          | 0.97         | 31             | <b>RIL174</b>    | 0.84    | 81        | RIL105 0.73              | 130         | RIL113 0.6                | 23    | 85   | RIL182 0.46                | 239        |  |
| <b>RIL82</b>    | 1.12     | 8        | <b>RIL</b> 161 | 0.96         | 32             | RIL88            | 0.84    | 82        | RIL43 0.73               | 131         | RIL221 0.6                | 23    | 86   | RIL185 0.45                | 240        |  |
| RIL30           | 1.12     | 6        | <b>RIL102</b>  | 0.96         | 33             | <b>RIL147</b>    | 0.84    | 83        | RIL204 0.73              | 132         | RIL133 0.6                | 23    | 87   | RIL249 0.44                | 241        |  |
| RIL79           | 1.1      | 10       | RIL51          | 0.96         | 8              | RIL29            | 0.84    | 22        | RIL233 0.73              | 133         | RIL237 0.6                | 23    | 88   | RIL179 0.43                | 242        |  |
| <b>RII 22</b>   | 1.1      | 11       | RIL49          | 0.95         | 35             | RIL17            | 0.83    | 85        | RIL54 0.73               | 134         | RIL136 0.0                | 52    | 80   | RIL167 0.43                | 243        |  |
| RIL37           | 1.07     | 12       | RIL41          | 0.95         | 36             | <b>RIL</b> 149   | 0.83    | 86        | RIL189 0.73              | 135         | RIL240 0.6                | 52    | 8    | RIL246 0.38                | 244        |  |
| RIL83           | 1.06     | 13       | <b>RIL108</b>  | 0.95         | 37             | RIL19            | 0.83    | 87        | RIL1 0.72                | 136         | RIL235 0.6                | 52    | 91   | RIL186 0.36                | 245        |  |
| <b>RIL117</b>   | 1.04     | 14       | <b>RII 26</b>  | 0.94         | 38             | <b>RIL110</b>    | 0.83    | 88        | RIL120 0.72              | 137         | RIL239 0.6                | 52    | 32   | RIL170 0.36                | 246        |  |
| RIL3            | 1.03     | 15       | <b>RIL57</b>   | 0.94         | 39             | <b>RIL</b> 6     | 0.83    | 68        | RIL217 0.72              | 138         | RIL168 0.6                | 52    | 93   | RIL247 0.34                | 247        |  |
| RIL46           | 1.03     | 16       | <b>RIL242</b>  | 0.94         | 6              | RIL5             | 0.83    | 90        | RIL135 0.72              | 139         | RIL158 0.6                | 52    | 8    | RIL225 0.34                | 248        |  |
| RIL99           | 1.02     | 17       | <b>RIL129</b>  | 0.94         | 41             | RIL47            | 0.83    | 91        | RIL230 0.71              | 140         | RIL81 0.6                 | 51    | 95   | RIL228 0.34                | 249        |  |
| RIL36           | 1.02     | 18       | RIL93          | 0.93         | 42             | <b>RIL</b> 241   | 0.82    | 92        | RIL112 0.71              | 141         | RIL216 0.0                | 51    | 96   | RII 223 0.33               | 250        |  |
| RIL94           | 1.01     | 19       | <b>RIL85</b>   | 0.93         | <del>6</del> 3 | <b>RIL220</b>    | 0.82    | 93        | RIL143 0.71              | 142         | RIL11 0.6                 | 51    | 57   |                            |            |  |
| <b>RIL109</b>   | 1.01     | 20       | <b>RIL91</b>   | 0.93         | 4              | RIL90            | 0.82    | 2         | <b>RIL</b> 4 0.71        | 143         | RIL206 0.6                | 51    | 98   |                            |            |  |
| RIL72           | 1.01     | 21       | <b>RIL100</b>  | 0.93         | 45             | <b>RIL209</b>    | 0.81    | 95        | <b>RIL231</b> 0.71       | 14          | RIL153 0.6                | 51    | 66   |                            |            |  |
| <b>RIL107</b>   | 1.01     | 3        | <b>RIL131</b>  | 0.92         | 46             | <b>RIL101</b>    | 0.81    | 8         | RIL211 0.71              | 145         | RIL28 0.6                 | 5     | 00   |                            |            |  |
| RIL76           | 1.00     | 33       | RIL27          | 0.92         | 47             | RIL39            | 0.81    | 76        | RIL194 0.71              | 146         | RIL214 0.6                | 5     | 201  |                            |            |  |
| RIL33           | 1.00     | 24       | RIL68          | 0.92         | 48             | RIL16            | 0.81    | 86        | RIL172 0.71              | 147         | RIL62 0.4                 | 59    | 02   |                            |            |  |
|                 |          |          | <b>RIL</b> 197 | 0.91         | 49             | <b>RIL115</b>    | 0.81    | 66        | RIL114 0.71              | 148         | RIL190 0.4                | 59    | 03   |                            |            |  |
|                 |          |          | <b>RIL145</b>  | 0.91         | 50             | RIL42            | 0.8     | 100       | RIL157 0.71              | 149         | RIL137 0.4                | 59    | 20   |                            |            |  |
|                 |          |          | RIL69          | 0.91         | 51             | <b>RIL159</b>    | 0.8     | 101       | RIL21 0.7                | 150         | RIL156 0.4                | 59    | 05   |                            |            |  |
|                 |          |          | RIL71          | 0.91         | 52             | RIL84            | 0.8     | 102       | RIL152 0.7               | 151         | RIL162 0.4                | 59    | 306  |                            |            |  |
|                 |          |          | <b>RIL132</b>  | 0.91         | 53             | <b>RIL196</b>    | 0.8     | 103       | RIL52 0.7                | 152         | RIL163 0.4                | 59    | 01   |                            |            |  |
|                 |          |          | <b>RIL160</b>  | 0.91         | 27             | <b>RIL125</b>    | 0.8     | 104       | RIL35 0.7                | 153         | RIL165 0.5                | 58    | 808  |                            |            |  |
|                 |          |          | <b>RIL23</b>   | 0.91         | 55             | <b>RIL218</b>    | 0.8     | 105       | RIL205 0.69              | 154         | RIL238 0.5                | 26    | 60   |                            |            |  |
|                 |          |          | RIL53          | 0.9          | 56             | <b>RIL127</b>    | 0.8     | 106       | RIL151 0.69              | 155         | RIL213 0.4                | 20    | 210  |                            |            |  |
|                 |          |          | RIL12          | 0.9          | 57             | RIL59            | 0.8     | 107       | RIL124 0.69              | 156         | RIL224 0.5                | 20    | 111  |                            |            |  |
|                 |          |          | <b>RIL140</b>  | 0.9          | 58             | <b>RIL130</b>    | 0.8     | 108       | RIL10 0.69               | 157         | RIL236 0.4                | 55    | 212  |                            |            |  |

÷ ţ ÷ fnhc (TT) Ś . 4 11 + 1 -4 АВШ 13 ÷

| RII 86        | 60   | 50 | RII 191       | 0.79 | 109 | RII 188 (       | 0.69 | 158 | RI 229 055  | 213 |
|---------------|------|----|---------------|------|-----|-----------------|------|-----|-------------|-----|
| RIL55         | 0.9  | 09 | <b>RIL146</b> | 0.79 | 110 | RIL171 (        | 0.69 | 159 | RIL244 0.54 | 214 |
| RIL48         | 0.89 | 61 | <b>RIL150</b> | 0.79 | 111 | RIL234 (        | 0.69 | 160 | RIL202 0.54 | 215 |
| RIL63         | 0.89 | 62 | <b>RIL5</b> 0 | 0.79 | 112 | RIL44 (         | 0.69 | 161 | RIL164 0.54 | 216 |
| <b>RIL126</b> | 0.89 | 63 | RIL2          | 0.78 | 113 | RIL192 (        | 0.68 | 162 | RIL176 0.53 | 217 |
| <b>RIL104</b> | 0.89 | 2  | RIL98         | 0.78 | 114 | RIL20 (         | 0.68 | 163 | RIL138 0.53 | 218 |
| <b>RIL139</b> | 0.89 | 65 | RIL60         | 0.77 | 115 | RIL144 (        | 0.68 | 164 | RIL195 0.52 | 219 |
| <b>RIL103</b> | 0.87 | 99 | <b>RIL</b> 7  | 0.77 | 116 | RIL9 (          | 0.67 | 165 | RIL210 0.52 | 220 |
| <b>RIL122</b> | 0.87 | 67 | RIL18         | 0.77 | 117 | <b>RIL215</b> ( | 0.67 | 166 | RIL181 0.52 | 221 |
| <b>RIL106</b> | 0.87 | 80 | RIL45         | 0.76 | 118 | RIL198 (        | 0.67 | 167 | RIL177 0.52 | 222 |
| <b>RIL116</b> | 0.86 | 69 | RIL40         | 0.76 | 119 | RIL66 (         | 0.67 | 168 | RIL227 0.52 | 223 |
| <b>RIL208</b> | 0.86 | 70 | RIL89         | 0.76 | 120 | RIL64 (         | 0.66 | 169 | RIL226 0.52 | 224 |
| RIL15         | 0.86 | 71 | <b>RIL119</b> | 0.76 | 121 | RIL134 (        | 0.66 | 170 | RIL245 0.52 | 225 |
| RIL75         | 0.85 | 72 | RIL38         | 0.75 | 122 | RIL193 (        | 0.66 | 171 | RIL203 0.52 | 226 |
| RIL58         | 0.85 | 73 | <b>RIL123</b> | 0.75 | 123 | RIL219 (        | 0.65 | 172 | RIL200 0.51 | 227 |
| <b>RIL8</b> 0 | 0.85 | 74 |               |      |     | RIL67 (         | 0.65 | 173 | RIL173 0.51 | 228 |
|               |      |    |               |      |     | <b>RIL232</b> ( | 0.65 | 174 | RIL250 0.5  | 229 |
|               |      |    |               |      |     | RIL248 (        | 0.65 | 175 | RIL243 0.5  | 230 |
|               |      |    |               |      |     | RIL212 (        | 0.65 | 176 | RIL178 0.5  | 231 |
|               |      |    |               |      |     | RIL92 (         | 0.65 | 177 | RIL199 0.5  | 232 |
|               |      |    |               |      |     | RIL207 (        | 0.65 | 178 |             |     |



Fig. 2: Salinity tolerant and sensitive RILs of mustard under salinity environment ECiw 12dS/m at seedling stage

RILs under salt stress circumstances due to the preservation of high photosynthetic activity, high K<sup>+</sup> concentration, low Na<sup>+</sup> and Na<sup>+</sup>/K<sup>+</sup> ratio (Keisham *et al.*, 2018). These research' conclusions agreed with our experimental results.

A multiple regression model's fit can be evaluated using Mallows' Cp Criterion; smaller Cp values are preferable because they signify lower levels of unexplained error.

#### Conclusion

The Indian mustard RILs evaluated in our study have a significant variation in measured growth, photosynthetic and ionic traits. The stepwise regression approach *i*WUE, E, RFW, *in*WUE, gS and LFW as defining traits for Pn, indicating their critical contribution to reducing salt stress. Based on our study on RIL24, RIL32, RIL74 and RIL 87 were identified as potential resource or donor for salt-tolerance and may be used for cultivation under salinity stress. Further these lines may be employed in hybridization programs to create future ready new high-yielding, salt-tolerant breeding lines to combat salt stress. Additionally, these genotypes might be used to comprehend the genetic and molecular mechanism of Indian mustard salt tolerance.

#### References

- Ashraf M and Mehmood S. 1990. Response of four Brassica species to drought stress. Environ Exp Bot **30**: 93–100. DOI: 10.1016/0098-8472(90)90013-T.
- Ashraf M, Nazir N and McNeilly T. 2001. Comparative salt tolerance of amphidiploid and diploid *Brassica* species. *Plant Sci* **160**: 683–689.
- Fernandez GCJ. 1992. Effective selection criteria for assessing plant stress tolerance. Proceeding of the International Symposium on Adaptation of Vegetables and other Food Crops in Temperature and Water Stress, Shanhua, Taiwan, 1992: 257–270.

- IRRI. 2014. Statistical Tool for Agricultural Research (STAR) v. 2.0. 1. IRRI Los Banos, Philipines.
- Kang L, Qian L, Zheng M, Chen L, Chen H, Yang L, You L, Yang B, Yan M, Gu Y, Wang T, Schiessl SV, An H, Blischak P, Liu X, Lu H, Zhang D, Rao Y, Jia D, Zhou D, Xiao H, Wang Y, Xiong X, Mason AS, Chris Pires J, Snowdon RJ, Hua W and Liu Z. 2021. Genomic insights into the origin, domestication and diversification of *B. juncea. Nat Genet* 53: 1392–1402. DOI: 10.1038/s41588-021-00922-y.
- Keisham M, Mukherjee S and Bhatla SC. 2018. Mechanisms of sodium transport in plants progresses and challenges. *Int J Mol Sci* **19**: 647.
- Kumar M. 2014. Crop plants and abiotic stresses. *J Biomol Res Ther* 3. DOI: 10.4172/2167-7956.1000e125.
- Kumar PP, Rao SVR, Koshta VKCAK, Khan MA, Lakhera ML and Teja IK. 2022a. Performance of rapeseedmustard in India-a temporal analysis. J Oilseed Brassica 13: 45–52.
- Kumar R, Singh A, Bhardwaj AK, Kumar A, Yadav RK and Sharma PC. 2022b. Reclamation of salt-affected soils in India: Progress, emerging challenges, and future strategies. *L Degrad Dev* 33: 2169–2180. DOI: 10.1002/dr.4320.
- Kumari V, Jambhulka S, Sharma HKCBK, Sood P, Guleria SK, Bala A and Sanju S. 2019. Phenotypic stability for seed yield and related traits in Trombay mustard genotypes under North western Himalayas. J Oilseed Brassica 10: 33–37.
- Metternicht GI and Zinck JA. 2003. Remote sensing of soil salinity: Potentials and constraints. *Remote Sens Environ* 85: 1–20. DOI: 10.1016/S0034-4257(02)00188-8.
- Pant P, Hamsa S and Kaur J. 2022. Advances in Breeding Strategies for Improving Stress Tolerance in *Brassicas*. The *Brassica juncea* Genome. *Springer*, 439–469.

- Piper CS. 2019. Soil and plant analysis. *Scientific Publishers*.
- Shannon MC, Grieve CM, Lesch SM and Draper JH. 2000. Analysis of salt tolerance in nine leafy vegetables irrigated with saline drainage water. *J Am Soc Hortic Sci* **125**: 658–664.
- Sharma PC and Sinha TS. 2012. Salt tolerance of Indian mustard: physiological factors. *Int J Life Sci* **1**: 97–111.
- Sharma PC, Prashat R, Gingh GD and Pareek A. 2008. Improving salt tolerance and seed yield in Indian mustard (*B. juncea* L.) through radiation induced mutagenesis. *Int Symp Ind Mut Plant*: No. IAEA-CN—167.
- Singh A, Singh RK, Singh J, Goswami A, Upadhyaya A and Sharma PC. 2020. 'DUS' characterization of an endangered salt tolerant radish landrace (Newar).

Indian J Tradit Knowl 19: 24-32.

- Singh J and Sharma PC. 2016. Comparative effects of soil and water salinity on oil quality parameters of *B. juncea*. *J Oilseed Brassica* **7**: 29–37.
- Singh J, Sharma PC, Sharma SK and Rai M. 2014. Assessing the effect of salinity on the oil quality parameters of Indian mustard (*B. juncea*) using Fourier Transform Near-Infrared Reflectance (FT-NIR) spectroscopy. *Grasas y Aceites* **65**: 1–8.
- Singh J, Singh V, Vineeth T V., Kumar P, Kumar N and Sharma PC. 2019. Differential response of Indian mustard (*B. juncea*) under salinity: photosynthetic traits and gene expression. *Physiol Mol Biol Plants* 25: 71–83.