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Abstract

A sudden outbreak of a plant disease might result in significant economic losses. Understanding the disease triangle,
disease epidemics, and forecasting are all crucial in dealing with pathogens. The Genus Alternaria is a notorious fungus
having ~275 species, responsible for enormous economic losses varying from 10% to 70% in crucifers which are
considered as major edible oil crops all over the world. The Alternaria blight/ black spot disease is the major bottleneck
in the global production of commercial oilseed Brassicas. Among Alternaria species, A. brassicae, A. brassicicola, A.
raphani, and A. alternata are well-documented for infecting several members of the Brassicaceae family. Recent advanced
taxonomic investigations have yielded a wealth of data that may be used to outline the evolutionary lineages within
Alternaria and related genera. In addition, some R genes/QTLs such as chitinase, endochitinase ‘ech42’, glucanase,
PmAMP1, AbVF19, Amr1 etc. from host crop and non-hosts have also been identified through molecular markers
targeting A. brassicae and A. brassicicola. Though the prediction models are available, but their practical utility is still
limited for effective forewarning. Another problem is the lack of robust data on the potentiality of indigenous as well as
exotic genetic resources with a resistance to Alternaria blight making the exploitation of non-host resistance (NHR)
mechanisms unfeasible in protecting Brassica crops. The availability of resistant sources is not yet reported in the U
triangle species. Thus, the focus of this review is to identify gaps and bottlenecks in our understanding of the Alternaria-
Brassica pathosystem in multiple dimensions which could aptly incorporate in holistic management approach with a
sustainable and profitable solution to deal with the black spot disease of crucifers.
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Introduction

Cultivated oilseed Brassica crops are challenged by
numerous biotic stresses causing considerable economic
losses of average 19.9 percent influenced by
environmental factors all over the world. Out of 44
pathogens known to infect crucifers, 16 pathogens are
considered as the major ones based on their geographical
distribution, host range, losses, and resources
deployment to manage them. Alternaria blight is one of
the serious threats for the oilseed Brassica in temperate
regions. The genus Alternaria is a universal fungus that
includes saprophytic, endophytic, and plant pathogenic
species. Various species of the Alternaria genus grow
and multiply on plant parts, agricultural products, animals,
and soil. Species of Alternaria genus are recognized as
serious fungi, responsible for huge losses in various
crops. Alternaria has been reported to have more than
4000 Alternaria-host associations according to the United

States Department of Agriculture Fungal Host Index and
ranks 10th among nearly 2000 fungal genera based on the
entire host records. Numerous Alternaria species have
been illustrated through their taxonomic and
morphological characteristics, pathogenic nature, and
their distribution (Simmons 1967, 2002, 2007). Due to the
considerable harmful effects of Alternaria spp. on plants
and their surroundings, accurate and speedy detection
of Alternaria species by agriculturists, researchers, and
medical mycologists is required. Similarly, a wide
understanding of host-pathogen system as well as the
resistant plants and their mechanism of resistance is
important to tackle this pathogen and avoid heavy losses
(Woudenberg et al., 2013). In this review,  the taxonomy,
origin,  distribution and economic impact of Alternaria
species, which is one of the most important pathogen of
the crucifers will be discussed in details. Moreover,
different aspects of the related host-pathogen system
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including the genetics and molecular mechanism have
also been described to understand the current
advancement in research towards this direction. This will
help researchers to identify the lack in the field and employ
novel techniques to control its spread and infection.  The
review also describes in detail the different disease
prediction models that can be used to forecast the different

aspects of disease spread. Furthermore, different aspects
of host resistance against the disease and management
of the disease has also been discussed in this review to
address the current problem of global food security and
the threat posed by the attack of this pathogen to the
cultivation of Brassica plants (Fig. 1).

Fig. 1: Alternaria Pathogen threat mitigation through holistic management approach
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Taxonomy

Alternaria was first illustrated by Nees (1816) and
established as A. tenuis species. Alternaria genus
produces peculiar dark colored, phaeo-dictyospores in
chains that have a beak of tapering apical cells. Although
some Alternaria species emerge to have a sexual stage
to complete their life cycle, the majority of them does not
possess sexuality. Von Keissler (1912) synonymies both
Torula alternata and A. tenuis  with Alternaria alternata,
being indistinctness in Nees’s description of A. tenuis.
The outcome of life span research on Alternaria taxonomy
by Simmons (2007) summarized and documented 275
Alternaria species based on morphological
characteristics. One species of Alternaria was moved to
the genus Prathoda whereas Alternariaster,
Chalastospora, and Teretispora were removed from the
genus. The molecular analysis found multiple non-
monophyletic genera in Alternaria genus, and Alternaria
species clades, which were inconsistent in associating
species-group based on morphological characteristics
(Pryor et al., 2009; Wang et al., 2011; Lawrence et al.,
2012). The A. alternata, A. brassicicola, A. infectoria, A.
porri, and A. radicina species-group were strongly
supported by these findings and two new species groups,
A. sonchi (Hong et al., 2005) and A. alternantherae
(Lawrence et al., 2012) and three new genera, Crivellia
(Inderbitzin et al., 2006), Undifilum (Pryor et al., 2009),
and Sinomyces (Wang et al., 2011), were illustrated. Most
recent molecular studies by Lawrence et al. (2013)
recognized A. panax and A. gypsophilae as the two novel
species-groups of Alternaria. Further, the findings raised
eight species-groups to sections within Alternaria. A.
infectoria species-group could not obtain the grade of a
section through the eight asexual phylogenetic lineages
in sexual phylogenetic Alternaria. The Alternaria
complex presently comprises Alternaria, Chalastospora,
Crivellia, Embellisia, Nimbya, Stemphylium,
Ulocladium, Undifilium, and Sinomyces (Simmons, 2007).

The Brassicas

The Brassica belongs to the family Brassicaceae which
comprises 3709 species in 338 distinct genera.  The
member of the family includes various economically
important crops contributing to high-quality edible and
industrial oils, vegetables, and weeds  (Warwick et al.,
2006). The area, production, and yield during 2018–2019,
globally, were estimated to be 36.59 Mha, 72.37 Mt, and
1980 kg/ha, respectively for rapeseed-mustard. India
contributed 19.8 and 9.8%, area and production,
respectively, and holds third position globally (USDA,
2020). The major oilseeds and rapeseed-yielding species
belong to the genus Brassica. These species include B.

napus L., B. rapa L.  (AA, 2n = 20), and B. juncea (L.)
Czern. & Coss.  (AABB, 2n = 36), which are commonly
known as leaf mustard, turnip rape, and rape respectively.
Other common names for B. napuinclude rapeseed, oil
rape, colza, oilseed rape, swede rape, and Argentine rape.
Similarly for B. rapa, Polish rape,  oil turnip, and rapeseed
for B. juncea, rapeseed, Indian mustard, oriental mustard,
and brown mustard are the popular common names. The
common names of the three species are generally fallen
under different groups in different countries. In India,
under rapeseed, turnip rape and mustard are included,
whereas in North America and Europe, under rapeseed,
rape and turnip rape are included. China cultivates all
three species but winter-grown rape is the chief source
of rapeseed. Besides these three rapeseed crops,
Brassicaceae includes B. rapa L. var. Toria , B. rapa L.
var. Brown, B. rapa L. var. Yellow Sarson , B. nigra (L.)
Koch ), B. hirta Moench (= Sinapis alba L.), B. carinata,
A. Braun, B. tournefortii Gouan , Eruca sativa Mill. (= E.
vasicaria ssp. sativa (Mill.) Thell.) , Camelina sativa
Crantz., Crambe abyssinica Hochst. ex O.E. Schulz, and
C. hispanica L.

Occurrence and distribution

Alternaria brassicae and A. brassicicola have been
found on Brassicaceae hosts throughout the world
(Meena et al., 2010; Saharan et al., 2016; Akhtar et al.,
2017a). On oil-yielding brassicas, Alternaria brassicae
and A. brassicicola are the most harmful, and both are
frequent on vegetable crucifers. According to CAB
International (2007), Black spot, caused by these two
fungi, is a major disease in the Netherlands and other
European countries, which causes yield losses of up to
75% in different crops. While doing quarantine testing
during the import of Brassica germplasm into India from
more than 20 countries, Akhtar et al. (2017a) reported
that A. brassicicola was more common as compared to A.
brassicae in seeds , whereas, A. brassicae was observed
only in the material from nine countries. This is also evident
from several reports that yield loss in rape due to A.
brassicicola ranged up to 50% in Germany (Mac Kinnon
et al., 1999), and the seed yield loss of 59% was determined
in cabbage in Bangladesh due to A. brassicicola (Hossain
and Mian, 2005).

Alternaria raphani has been found in Canada, Denmark,
Egypt, Greece, India, Iran, Japan, the Netherlands, and
the United States on diverse brassicaceous hosts (Ellis,
1971). It is most frequent on radish, but can also be seen
on other Brassica plants and crops that produce oil (Verma
and Saharan, 1994; Akhtar et al., 2017a). A. raphani was
detected in 80% of a seed lot of R. sativus and a large
proportion of diseased seedlings died before emergence
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due to this fungus (Vannacci and Pecchia, 1988). Rude et
al. (1999) intercepted A. raphani in seed samples of
Brassica rapa from Saskatchewan and Alberta provinces
of Canada with a significant reduction in
seed germination. Akhtar et al. (2017a) also intercepted
A. raphani on B. rapa from Australia and B. carinata
from Germany.

While Alternaria alternata is a widespread saprophyte
that is found on a variety of plants and other substrata, it
is regarded as a poor pathogen among the Alternaria
species that is identified to infect Brassicaceous hosts. It
appears on a wide range of Brassicaceous plants,
including oil-producing crops such as rapeseed-mustard,
Crambe, and Brassica vegetables (Ellis, 1971; Verma and
Saharan, 1994).

The disease and economic impact

Among the key diseases of Brassica crops, the black
spot disease or Alternaria blight is the major hindrance in
global production.  Incidence of Alternaria in the early
stage of the crop may lead to seedling decay, as symptoms
start arising on the cotyledons leading to a poor crop
stand, whereas infection in the later growth stage of plants
on leaves, leaf petioles, stems, inflorescences, siliquae,
and seeds drastically reduce quality and final yield of the
crop (Akhtar et al. 2017a). Symptoms in the form of lesions
are nearly the same in every infected host species (Meena
et al. 2010; Meena et al. 2016a). Dark brown spots/lesions
with a characteristic concentric edge, often with a
yellowish chlorotic halo, occur on older leaves, stems,
and siliques as the disease progresses (Figure 2).

Fig 2: Alternaria blight disease lesion (a) with concentric rings, blight on (b) cotyledon, (c) leaf, (d) whole plant, and (e)
siliqua of Brassica juncea (Photo: Dr. P.D. Meena)

There may be differences in color, size, shape, formation
of concentric rings, and yellow-halo nearby the lesions
depending on the diverse agro-ecological locations, host
genotypes, soil nutritional status, and involved
pathotypes. Expanding necrotic lesions reduce
photosynthetic capability, hasten leaf aging, and cause
leaf death which may further lead to the collapse and
death of plants under high pathogen inoculum stress.
Moreover, the effects on the cell membrane, chloroplast,
and mitochondria have been seen in rapeseed (Verma
and Saharan, 1994; Tewari, 1991a; Saharan et al., 2016).

Oilseed Brassica yield losses due to Alternaria blight
range from 10% to 70%, depending on the period of
infection, post-infection environmental conditions, and
the adopted management measures (Saharan et al., 2016).
Alternaria blight causes a 32-57 percent decline in seed
output and a 4.2-4.5 percent fall in oil content in mustard
in Nepal (Shrestha et al., 2005). The maximum test weight
seed loss (50.0%) in cauliflower from Uttarakhand due to

Alternaria blight (A. brassicae and/ or A. brassicicola)
was reported by Prasad and Vishunavat (2006). Kumar
(1997) reported yield loss of 27.5, 25.0, and 20.3 percent
due to Alternaria blight in B. rapa var. yellow sarson, B.
rapa var. brown sarson and B. juncea, respectively from
Himachal Pradesh, India. The disease during the extreme
stage affects the seed quality where the seeds are
deformed with patches on the seed coat which impact
the marketing of the seed as well.

The disease is generally assessed using descriptive
keys , standard area diagrams, incidence-severity
relationships, inoculum disease intensity relationships
), infection type, and host reaction as resistant, tolerant,
and susceptible, and disease stress tolerance attributes
(Saharan et al., 2016).

The Pathogens

Four Alternaria species have been mainly found to be
harmful to cruciferous crops: Alternaria brassicae (Berk.)
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Sacc., A. brassicicola (Schwein.) Wiltsh., A. raphani
Groves and Skolko, and A. alternata (Fr.) Keissl. These
are known to cause the Black spot disease of
Brassicaceae crops. These four Alternaria species,
responsible for disease transmission to oilseed Brassicas,
cruciferous crops, wild cruciferous hosts, and weeds,
have a wide range of hosts. Recently, morphologically
and phylogenetically identified 10 species of genus

Alternaria namely, A. alternata, A. arborescens, A.
brassicae, A. ethzedia, A. hordeicola, A. infectoria, A.
japonica, A. malvae, A. metachromatica, and A.
tenuissima were confirmed pathogenic on B. napus cv.
Thunder TT and B. juncea cv. Dune as well (Al-Lami et
al., 2019). The identification of the majority of Alternaria
species infecting rapeseed-mustard crops is based on
morphological and physiological parameters (Table 1).

Table 1 Description of morphological characters, colony growth and sporulation pattern of Alternaria spp. from rapeseed-
mustard  (Source: Blagojevic et al., 2020)

Key character A. brassicae A. brassicicola A. japonica A. alternata

Mycelial texture and Cottony, circular Cottony, circular Cottony, circular Aerial or cottony,
shape circular
Colony colour White and brownish Brown black Grey greenish Grey, brown, and green
Colony margin Cream and pale Yellowish or cream Various Various
Colony growth 3.3 ± 0.7 5.9 ± 0.5 4.0 ± 0.5 10.0 ± 1.1
(mm/day)
Conidiophores (µm) 125.3 ± 19.4 112.7 ± 45.6 105.1 ± 44.4 72.9 ± 23.2
Conidial shape Obclavate mostly Ellipsoid, ovoid, Ellipsoid, ovoid, Obclavate to long

or obclavate or obclavate ellipsoid
Conidial length (µm) 152.2 ± 32.7 36.5 ± 8.7 66.9 ± 9.9 36.9 ± 5.8
Conidial width (µm) 13.1 ± 1.7 9.0 ± 2.1 10.4 ± 4.0 9.1 ± 3.2
Beak length (µm) 62.3 ± 12.4 2.4 ± 0.5 3.0 ± 1.3 4.6 ± 1.6
Number of transversal 3–15 1–8 1–8 1–8
septa (min.-max.)
Number of longitudinal 2-5 0-5 2-7 0-6
septa

Many liquid and solid media for in vitro culture and
sporulation of Alternaria spp. have been documented
(Verma and Saharan, 1994; Meena et al., 2012).  A.
brassicae, A. brassicicola, and A. raphani grow well in
most of the carbon sources (Taber et al., 1968). For
improved sporulation, the ideal temperatures and relative
humidity for A. brassicae, A. brassicicola, and A. raphani
are 20-25°C and 95-100 percent, respectively (Ansari et
al., 1989; Taber et al., 1968; Changsri and Weber, 1960,
1963). These three species require a pH range of 6-8 for
growth and sporulation. Alternating light and darkness
promote abundant development and sporulation in A.
brassicae (Ansari et al., 1989; Verma and Saharan, 1994;
Taber, 1964); however, continuous light inhibits
sporulation (Ansari et al., 1989; Verma and Saharan, 1994;
Taber, 1964; Singh and Suhag, 1983). Infected seeds,
diseased plant debris, pathogen propagules deep in the
soil, and other crucifers/weed hosts in a given agro-
ecosystem are all the ways for the pathogen to survive
and propagate (Chupp and Sherf 1960; Dixon 1981; Verma
and Saharan 1994; Meena et al. 2016b). All the four
Alternaria species are found on seeds of crucifers (Figure
3) and such seeds have been found to carry the inoculum

with a high rate of transmission under favorable
temperature. (Atkinson, 1950; Vannacci and Pecchia,
1988; Sivapalan and Browning, 1992; Kubota et al., 2006;
Shrestha et al., 2000). Infections on host plants begin
with infections on infected seed, spores produced on
agricultural leftovers, infections on cruciferous hosts,
weeds, or potentially micro-sclerotia, and the
chlamydospores produced on infected debris. Conidia
are prevalent during wet weather, and rain splash and
wind distribute them locally. Lesions grow and produce
wind-borne spores in favorable weather circumstances,
which can spread the infection to other plants on the
same or nearby plants. When conditions are favorable
for infecting seed and other portions of plants, which
constitute the pathogen’s source of survival, the cycle
continues throughout the season. (Saharan, 1992; Verma
and Saharan, 1994; Mehta et al., 2005). Akhtar et al.
(2017b) documented the survival of A. brassicicola in
cryo-preserved seeds of B. juncea for more than 14 years.

Depending on the Alternaria spp. and the interaction
between host-pathogen, the intensity of the disease can
differ, this is generally regulated by the virulent genes.
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The pathogenicity-related genes can be identified, cloned,
and sequenced for Alternaria species that infect crucifers
which would help to clarify various questions about their
relationship with crucifer hosts. (Cramer et al., 2006;
Jasalavich et al., 1995; Kim et al., 2007). In A. brassicicola,
pathogenicity factors and the transcription factor Amr1
have been discovered (Mamgain et al., 2013; Cho et al.,
2012). A study has reported that cell wall integrity, conidial
survival, and pathogenicity of aged A. brassicicola
spores are all dependent on a non-ribosomal peptide
synthase gene (AbNPS2) (Kim et al., 2007). Generally, for
a functional genomics study, A. brassicicola is regarded
as the species of choice because over 100 genes have
been functionally evaluated using various strategies
such as gene knockdown and overexpression (Oide et
al., 2006; Cho et al., 2006, 2007, 2009; Kim et al., 2007;
Mamgain et al., 2013).

Pathogenesis

On cruciferous hosts, the infection mechanism and
pathology of four Alternaria species have been
extensively researched. The role of external and internal
variables, as well as enzymes, toxins, and genes driving
pathogenesis, has been determined. The A. brassicicola
genes AbVF19 and Amr1 makes this pathogen an effective
and successful crucifer facultative parasite (Verma and
Saharan, 1994; Cho et al., 2007, 2009, 2012; Giri et al.,
2013; Mamgain et al., 2013). The presence of brown-
colored dead cells at the infection site indicates a
hypersensitive host response to pathogen invasion,
which inhibits pathogen proliferation. There is still a need
for more information on the Alternaria-Brassica
interaction to establish accurate and repeatable screening

approaches as well as properly defined pathogenic
variability (Meena et al., 2015).

A variety of toxins and metabolites are produced by
Alternaria species, including terpenoids, pyranones,
steroids, and nitrogen-containing compounds (s). During
Alternaria-crucifer interactions, many biochemical
changes occur in both the host and the pathogen.
Different types of primary and secondary metabolites are
produced as a result of these metabolic changes, which
influence the host defense system and pathogen
virulence. A. brassicicola produces compounds like
antitumoric depudecin, antibiotic complex brassicicolin
and phytotoxic brassicicenes. Alternaria species produce
both host-specific and non-host-specific toxins, which
aid pathogenicity and help the pathogen become
successful. The role of toxins in the infection process, as
well as their biosynthesis, method of action, chemical
structure, role in host defense, and accumulation, have
been thoroughly discussed (Verma and Saharan, 1994;
Lou et al., 2013;  Pedras et al., 1998, 2001, 2002, 2009;
Thomma, 2003; Marmath et al., 2013a; Meena et al., 2014).

Pathogen diversity

Despite its reputation as an imperfect fungus, Alternaria
exhibits genetic variability within species, which could
be attributed to mutation, somatic hybridization,
heterokaryosis, uniform host selection, significant
dispersal, or the presence of a cryptic sexual stage. In
four species of Alternaria that cause blight and black
spot disease in crucifers, pathogenic diversity has been
identified in the form of pathotypes or variations.
Pathogenic variability in Alternaria species is driven by

Fig. 3: Growth and conidial morphology of (a) Alternaria brassicae; (b) A. brassicicola; (c) A. alternata. (Photo: Jameel
Akhtar)
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several variables such as pathological, symptomato
logical, morphological, cultural, nutritional, biochemical,
genetical, molecular, proteome level, thermo-sensitivity,
and fungicidal sensitivity, among others. Primary
interpretation on dissimilarity in cultural characteristics
and pathogenesis of different isolates of Alternaria were
made by Stoll (1952), in A. brassicicola - vegetables by
Van Schreven (1953), in A. brassicae- Brassica, and by
Atkinson (1953) in A. raphani – radish host–
pathosystem. Based on the dissimilarity in their
physiological and pathological characteristics, three
strains of A. alternata have been isolated from Crambe,
strain B is the most pathogenic, strain A is moderately
pathogenic, and strain C is the least harmful. Similarly,
Atkinson (1953) had divided A. raphani into two races:
“Wild Type” and “Variant Type” based on the
pathological and physiological differences. Three isolates
of A. brassicae, A, C, and D have been identified that
differ in appearance, growth, sporulation, and culture
properties, as well as virulence in B. carinata (Vishwanath
and Kolte, 1997). Stoll (1952) classified three pathotypes
of A. brassicae that infect cauliflower siliquae as very
aggressive, less aggressive, and non-pathogenic. Gupta
et al. (2004) discovered four pathotypes of A. brassicae
from B. juncea and named them Bj-4, Bj-5, Bj-6, and Bj-7
based on host differences and symptomatological
differences. Mehta et al. (2003) found the pathotypes
DLK, RSR-1, and GDP of A. brassicae. Brassica seeds,
cotyledons, and leaves all showed a positive reaction
when categorizing A. brassicae isolates as virulent or
avirulent, according to Meena et al. (2017). Such research
could be utilized to produce and evaluate resistant
brassica germplasm, particularly in case of populations
of A. brassicae that are more virulent.

Some researchers merely reported the number of isolates
with differentials rather than pathotypes (Kumar et al.,
2003; Mehta et al., 2003; Sangwan and Mehta, 2007).
Other characteristics have been utilized to identify
pathogenic variability in Alternaria species that infect
crucifers in the absence of host differentials.
Symptomatology (Gupta et al., 2004; Goyal et al., 2013),
morphology (Vishwanath and Kolte, 1997), genetics
(Sharma et al., 2013; Pramila et al., 2014), and proteome
level are among the criteria that have been linked to
pathotype virulence. The aggressiveness of pathogens
reveals a wide range of tolerance to Brassica species,
including A. brassicae. (Meena et al., 2012). Using two
marker systems, universal rice primers (URP) and inter
simple sequence repeat (ISSR), the molecular
characterization of 38 A. alternata isolates obtained from
indigenous and alien sources indicated variations based
on the geographical origin of diverse isolates. This was

the first research to employ URP-PCR in conjunction with
ISSR-PCR to characterize genetic diversity in A. alternata,
and was  sensitive and trustworthy (Kandan et al., 2014).

Epidemiology and Forewarning

The primary infection of Alternaria takes place on the
cotyledonary leaves, which serve as a secondary infection
source for the entire crop. For infection, >4 hours of leaf
wetness at 25°C results in enhanced infection and disease
transmission. The spores infect other sections of the plant
when temperature conditions are favourable and if dew
is present. Under ideal climatic circumstances, the
infection spreads through the stomata, and new lesions
appear within 4-6 days. The pathogen affects the seed
by penetrating the silique’s tissues. Darkness or low light
intensity of 1000 lux, temperature of 25°C, and relative
humidity of >90 percent have been described as
favourable conditions for Alternaria conidial germination
(Shrestha et al., 2005).

Temperatures of 12–25°C, relative humidity >70% with
occasional winter rains or irrigations, wind speeds of 2–
5 km/h, closer plant spacing (30–15 cm), and high nitrogen
dosages (80 kg/ha) have been described as favorable
environmental factors for disease growth under natural
conditions (Sangeetha and Siddaramaiah, 2007). The
penultimate week of October’s raya crop had 52 percent
disease, but the third week of November’s harvest had
only 15.5 percent disease. Alternaria spores were trapped
in 7-day volumetric spore traps for around 10-11 days
prior to the onset of the disease, and their concentration
rose until it peaked in March. The spores were trapped at
its peak between 10 a.m. and 2 p.m. (46 percent of total
spores) and were lowest between 10 p.m. and 6 a.m.,
following which its concentration dropped dramatically
after 2 p.m. (Singh 2005).

According to Meena et al. (2011), disease severity rose
when the planting date was postponed. With the delayed
sowing, the A value AUDPC and the ‘r’ value (apparent
infection rate) were higher in the cv. ‘Varuna.’ Alternaria
blight severity was substantially lower in the October
planted crop. In comparison to line sowing, the disease
spread faster using the broadcasting method (45 cm).
When K (40 kg/ha) was administered along with the
recommended fertilizer amount, the disease intensity fell
as well (Gupta et al., 2018). Chattopadhyay et al. (2005)
used cv. ‘Varuna’ seeded on 10 dates at weekly intervals
to assess data for Alternaria blight progression and
development from eight locations. The earliest
development of disease on leaves occurred between 42
and 139 days after sowing (DAS), according to the
findings. The disease then developed on pods with 67 to
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142 DAS, with a peak at 99 DAS. Severity of Alternaria
blight on leaves was positively correlated to a daily T

max

of 18-27°C, daily T
min

 of 8-12°C, daily T
mean

 of >100C, RH
mor

>92%, RH
even

 >40 % and RH
mean

 of >70% in the preceding
week. Disease severity on pods was favoured by a daily
T

max
 of 20-30°C, daily T

mean
 of >14°C, RH

mor
 >90%, daily

RH
mean

 of >70 %, sunshine >9 h and leaf wetness >10 h.
Temperature and relative humidity (RH) factors favourable
to disease development were found to match laboratory
findings. At least one week before the disease first
emerged on leaves and pods, regional and cultivar-specific
models could forecast the crop age at which
Alternaria blight first appeared on leaves and pods, as
well as the peak blight severity on leaves and pods
(Chattopadhyay et al., 2005). The role of variations in
disease development has also been highlighted, in
addition to weather considerations. In comparison to B.
carinata (HC-2, HC-9001), B. napus (GSH-1) and B. alba,
the rate of disease development was faster on B. juncea
(RH-30, RH-8113, RH-8695, RH-8546) and B. campestris
(YSPb-24, BSH-1, Candle, Shiva) types (Mehta et al.,
2008a; Saharan et al., 2016).

Disease prediction models

The Gompertz, Logistic, Monomolecular, and Exponential
models have all been utilized to construct prediction
models for the Alternaria blight (Table 2). Dang et al.
(2006) used the Gompertz model to establish a prediction
equation for the development of Alternaria blight, which
explained two elements, DI = Exp [log A Log (-B* Time)] + C*
Sowing Day + D* Factor 1, where DI stands for disease
intensity; (A and B are the two parameters of the Gompertz
model and C and D are the coefficient of the sowing day
and factor 1). All the kinds (with varied genetic
composition) that reacted differently to the
natural inoculum and factor 1 can be regarded as the
weather index, while factor 2 can be interpreted as the
contrast between the heating factor and the moisture
factor (Dang et al., 2006).

Sangwan et al. (2000) showed that the Gompertz model
may be used to predict Alternaria blight using two
components A and B derived from weather conditions
and disease progression analyses.

Where, Factor A= 0.091×T
max

+0.887×T
min

+
0.036×RH

mor
+0.808×RH

eve
-0.644×Sunshine h, and Factor

B= 0.317×T
max

+0.317×T
min

+0.933×RH
mor

+0.347×RH
eve

-
0.618×Sunshine h. These two components (A and B)
explained 60.3 and 24.5 per cent of total variation in the
weather variables, respectively, and jointly explained 85
per cent of total variation.

The most favourable weather conditions for disease
progression were found to be at T (max) of 20°C and RH
>90%. The T (max) and RH (mor) performed substantial
and favourable effects in disease development, according
to the stepwise regression analysis. In all cases, the R2

value was >0.9, indicating that meteorological variables,
in addition to varietal characteristics, played a
significant impact in disease progression. The following
were the prediction equations established for leaves and
pods for a variety of locations: (Mehta et al., 2002b;
Saharan et al., 2016).

Jha et al. (2013) reported that T
max

 is found to be positively
linked with disease index and demonstrated that T

max

(23.2°C), RH
max 

(80%), and RH
min

 (66%), with correlation
coefficients (r) of 0.73 for T

min
 and 0.51 for RH

min
 favouried

disease development. The regression equation developed
for leaves as Y1 = -47.388+5.114 T

min
 -2.371 T

max
+1.492

RH
min

 with R2 = 0.7376, whereas for siliqua Y2=
31.524+4.225 T

min
-1.883 T

max
 with R2= 0.69203.

Other researchers reported that black spot of crucifers
develops in epidemic form when temperatures range from
18 to 25°C, relative humidity is above 90%, wind speeds
are between 2 and 5 km h-1, with intermittent showers
(Ansari et al., 1988; Saharan, 1991; Verma and Saharan,
1994). The severity of disease in rapeseed-mustard was
significantly exacerbated by closer plant-to-plant spacing,
high nitrogen dosages, and frequent irrigation (Saharan,
1991; Stankova, 1972; Verma and Saharan, 1994). The leaf
wetness period, minimum, maximum temperature, and
relative humidity, date of sowing, crop age, variety, and
species of Brassica crops cultivated under various agro-
ecological circumstances were all taken into account when
developing disease forecasting models (Verma and
Saharan, 1994; Dang et al., 2006; Magarey et al., 2005;
Mehta et al., 2002b, 2008b; Kumar et al., 2013; Mahapatra
and Das, 2014; Mehta, 2014).. Disease severity increases
with the extended sowing time (Meena et al., 2011). With
the delayed sowing, the A value AUDPC (area under
disease progress curve) and the ‘r’ value (apparent
infection rate) were higher in the variety ‘Varuna.’  The
disease usually occurs 40-45 days after sowing, with the
most essential stages for disease commencement being
45 days and 75 days for disease peak (Meena et al., 2004).

Models based on weekly meteorological data from the
week of sowing to the sixth week of crop growth can be
utilized to provide reliable Alternaria blight forewarning.
As a result, credible forewarning for Alternaria blight in
different varieties of crop for crop age at first appearance
of disease, crop age peak severity of disease, and maximum
severity of disease in different types of crops is possible
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far in advance. (Kumar et al., 2013). Between 67 and 142
DAS, the disease first showed on pods, peaking at 99 DAS.
A maximum daily temperature of 18-27°C, a minimum daily
temperature of 8-12°C, a daily mean temperature of >10°C,
>92 per cent morning relative humidity (RH), >40 per cent
after noon RH, and a mean RH of >70 per cent in the
preceding week were all positively correlated with the
severity of Alternaria blight disease on leaves. A maximum
temperature of 20-30°C, a daily mean temperature of >14°C,
a morning RH of >90%, a daily mean RH of >70%, >9 h of
sunshine, and >10 h of leaf wetness all favoured disease
severity on pods. (Chattopadhyay et al., 2005).

Such variety-specific models could accurately forecast
the crop age when AB first emerged on leaves and pods,
the highest blight severity on leaves and pods, and the
crop age when blight severity was highest on leaves and
pods at least one week before the disease manifested on
the crop. This will allow for prompt and effective
fungicidal spraying.

In comparison to diseased debris placed in the field and
laboratory conditions, Mehta et al. (2002a) found that
infected debris stored in a deep freezer (10°C) was able to
generate 100% infection in the following season when
mixed in the soil. The higher survival of A. brassicae
during the investigation clearly demonstrated that the
primary infection in Indian mustard resulted from inoculum
that survived in infected plant debris and seeds that were
over-summered (April to June). According to the findings,
direct sunshine on the soil surface in unploughed fields
destroyed the pathogen on contaminated plant waste
(Meena et al., 2016b). B. juncea (RH-30, RH-8113, RH-
8695, RH-8546), B. campestris (YSPb-24, BSH-1, Candle,
Shiva), two B. carinata (HC-2, HC-9001), and one each of
B. napus (GSH-1) and B. alba (local) were observed for
the development and progression of Alternaria blight
by Mehta et al. (2008b).

Genetics of host-pathogen interaction

Resistance to A. brassicae is said to be governed by a
single dominant gene in Brassica juncea cultivar RC 781
(Tripathi et al., 1980). Even with Brassica alba cultivar
Emergo significant resistance to A. brassicae has been
documented (Brun et al., 1987a, b; Brun et al., 1989).
Rajarammohan (2017) reported six QTLs related to
Alternaria resistance in the mapping population of
Arabidopsis species which revealed the involvement of
multiple loci in resistance confirming the quantitative
nature of host responses. Epicuticular wax concentration
is greater in intra-specific crosses between B. napus and
B. juncea (Singh et al., 1999). When studying the various
mechanisms of horizontal resistance (HR) genotypes

against A. brassicae, large differences in the number of
lesions, size of lesions, latent duration, sporulation
capability, and infection rate were observed in B. napus
cultivar Tower and B. juncea cultivar RC-781 (Saharan
and Kadian, 1983). Infection was delayed up to 25 days
in Brassica juncea cultivar Tower, with just a few small
lesions (0.95). The latent durations of cultivars Tower
and RC-781 are 18 and 12 days, respectively, as compared
to 3 days in cv. Prakash. Prakash had a higher rate of
conidial production (265 conidia per lesion) than Tower
(92 conidia per lesion) (Saharan, 1991, 1992). Kolte (1987)
proposed that the size of lesions and the number of
sporulation could be used as primary criteria for
determining the level of tolerance or resistance to
Alternaria blight in Brassica species.

Inheritance of resistance

Krishnia et al. (2000) examined the genetics of Alternaria
blight resistance in inter- and intra-specific crosses of B.
juncea and B. carinata. The population of six generations
viz., P

1
, P

2
, F

1
, F

2
, BC

1 
and BC

2
 of six crosses viz., Pusa

Basant x EC322092, Kranti x EC322092, Varuna x EC322092,
RH 30 x EC322093, RH 30 x HC-1, and Varuna X PCC-2,
were evaluated for the inheritance of resistance to A.
brassicae. The F

2
 populations of all six crosses were more

susceptible to A. brassicae than their F
1
 counterparts.

Backcross progenies tend to diverge from their recurrent
parents’ performance. In all of the crosses, the X2 values
in the joint scaling test were highly significant, showing
that the simple additive dominance model was insufficient.
The six-parameter model demonstrated significant
additive gene effects in all six crosses, but only in the
three crosses Varuna x EC322092, RH 30 x EC322092, and
Varuna x PCC-2 showed dominant gene effects. In all
crosses, however, the bulk of additive gene effects
outweighed dominant gene effects. Except for Pusa Basant
x EC322092 and Kranti x EC322092, non-allelic interaction
and additive x additive I were significant in all crosses,
but additive x dominance epistasis was significant only
in Pusa Basant x EC322092, Kranti x EC322092, and RH 30
x HC-1 crosses. Significant dominance x dominance (I)
type epistasis was seen in the crosses Kranti x EC322092,
Varuna x EC322092, and RH 30 x EC322093. Based on
these findings, it is recommended that breeding
procedures that take advantage of both types of gene
effects to be used. As a result, genotypes resistant to
Alternaria blight can be developed by reciprocal recurrent
selection or diallel selective matings (Saharan and
Krishnia, 2001).

In each cross, the progenies of R x R cross families have
a lower percent disease intensity (PDI) of Alternaria blight
at the leaf stage than R self and R open families,
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demonstrating that inter-mating between resistant plants
aids in improving the level of resistance. Multiple disease
resistance has been improved with the frequency of
favorable genes increasing in the population, increasing
the likelihood of gaining multiple disease resistance in
other crops as well (Saharan and Krishnia, 2001). When
additive or additive x additive forms of genetic variants
are combined with repulsion phase linkage between
genes, the efficacy of bi-parental approaches can be
enhanced (Singh et al., 1986). Singh and Singh (1989)
advocated for selecting resistance to Alternaria blight in
inter-mated populations rather than F2, F3, and F4
populations, because generations of inter-varietal hybrids
would avoid the harmful effects of linkages and linkage
disequilibrium, and shuffle the desirable genes in one
recombinant population (Comstock and Robinson, 1952;
Matzinger and Cockerham, 1963; Gates et al., 1957).

The significant ‘j’ type epistasis was observed in crosses,
Pusa Basant x EC322092, Kranti x EC322092 and RH 30 x
HC-1 whereas ‘I’ type epistasis was significant in crosses,
Kranti x EC322092, Varuna x EC322092 and RH 30 x
EC322093. As a result, rather than F2, advanced
segregating generation should be used to select resistant
plants. As a result, crosses with a primarily significant
additive gene effect and additive x additive types of
epistasis must be used to improve through simple
selections. In most of these crosses, progenies of R x S
cross families had the greatest GCV, PCV, h2, and GG. In
vulnerable plant progenies, the value of heritability and
genetic gain is lower than in resistant progenies. A high
order correlation in Alternaria blight resistance at both
the leaf and siliquae phases is indicated by a nearly same
trend in all crossings for Alternaria blight index at the
siliquae phase. (Saharan and Krishnia, 2001).

Since polygenes rule resistance to Alternaria black spot,
breeding for resistance should include pyramiding of
minor genes to give additive/polygene resistance. The
transfer of Alternaria resistance genes into commercial
crucifer cultivars is thought to be dependent on the
accumulation of horizontal resistance genes in general
(Sharma et al., 2002). As a result, it is critical to identify
different sources of horizontal resistance across Brassica
plants and then combine them to improve protection
against Alternaria. Strong cross-incompatibility, a
polygenic background of resistance (additive and
dominant gene interactions), and differences in ploidy
(number of chromosomes) between Brassicaceae species
make it difficult to transfer Alternaria resistance from
wild species to cultivated forms (Nowicki et al., 2012).

Host Resistance

Many different Brassica species have been found as
sources of resistance to Alternaria species, but only a
few have been used to generate resistant cultivars (Verma
and Saharan, 1994; Sharma et al., 2002). The improvement
in the accumulation of resistance to numerous diseases
would be aided by a strong and positive association in
the enhanced degree of resistance to different pathogens
documented in Brassica species (Kumar and Saharan,
2002). Despite significant obstacles in the development
of resistant cultivars, several methods/techniques have
been used to include desired features in cruciferous crops
against black spot disease using both conventional and
biotechnology approaches. (Nowicki et al., 2012; Aneja
and Agnihotri, 2013). The exploitation of NHR
mechanisms and their applications, as well as the
resistance sources present in host germplasm, could be a
strategy for safeguarding Brassica crops from Alternaria
blight. The findings could be applied to a broader range
of plant pathogens. (Fatima et al., 2019). Brassica alba,
Camelina sativa, Eruca sativa, Capsella bursa-pastoris,
and Neslia paniculata were among the wild crucifers
that exhibited resilience (Tewari and Conn, 1993). Sharma
et al. (2002) evaluated cultivated and wild allies species
belonging to nine genera and reported that eight species
(Brassica desnottesii,Camelina sativa, Coincya
pseuderucastrum, Diplotaxis berthautii, D. catholica,
D. cretacea, D. erucoides, and Erucastrum gallicum)
were found completely resistant, whereas others were
classified as moderately resistant, susceptible or highly
susceptible. Since resistance is unavailable within the
cultivated species, so these resistant wild species could
be used as donor parents for introgression of resistance
to Alternaria blight disease in Indian mustard. Kumari et
al. (2020) introgressed the gene(s) imparting resistance/
tolerance against Alternaria blight in B. juncea from
Sinapis alba through somatic hybridization followed by
further backcrossing. Various factors contribute to
crucifer host resistance to Alternaria species. Resistance
inheritance in inter- and intra-specific crosses of B. juncea
and B. carinata are governed by adaptive genes, dominant
genes, additive x additive type epistatic genes, additive x
dominance, and dominance x dominance type non-allelic
interaction of genes (Singh and Singh 1989; Krishnia et
al., 2000b). Inter-mating between resistance plants aids
in the development of resistance to A. brassicae through
the pyramiding of resistance genes in oilseed Brassicas
genotypes (Saharan and Kadian, 1983b; Saharan and
Krishnia, 2001). Disease tolerance traits have been
reported in Brassica genotypes Rajat, Kranti, RH-781, and
RL-1359 (Gupta et al., 2002). PR-8988 and PR-9024
genotypes have a higher level of partial resistance or
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slow blighting (Kumar and Kolte, 2001). Based on
biochemical analysis, real-time PCR, and cluster analysis,
the B. juncea mutant DRMR-M-172 was shown to be
tolerant to Alternaria blight, while the DRMR-M-178,
DRMR-M-167, and DRMR-M-177 mutants appeared to
be tolerant and may be employed in the breeding programs
(Meena et al., 2020).

Horizontal resistance

Genetic resistance in plant can be classified two
components, i.e., horizontal and vertical. Resistance that
effectively provides protection against certain races of a
pathogen is called vertical or specific resistance, whereas
resistance against all races of a pathogen is called
horizontal or general resistance. Out of the two, horizontal
resistance is assumed to be polygenic and ‘durable’ such
that the targetted pathogens cannot overcome it. It has
been hypothesized, that the cumulation of horizontal
genes could possibly favor the introduction of Alternaria
resistance genes in the commercial varities of crucifers
(Sharma et al., 2002). Hence, it is crucial to identify
different sources of horizontal resistance and
subsequently combine them to increase durable
Alternaria resistance among Brassica plants. Kolte (1987),
suggested that lesion size and volume of sporulation are
also crucial determinants in determining resistance to A.
brassicae. In genotypes, PR-8988 and PR-9024, A.
brassicae produced significantly reduced number of
spots (4.36-15.89), smaller size of spots (2.12-6.17 mm),
lower sporulation (0.30-1.84 x103 conidia), lower disease
index (36.51- 42.2%), reduced apparent infection rate (r=
0.047-0.080), and lesser values of AUDPC (45.35-126.70)
on leaf and pod, respectively along with reduced leaf
defoliation (38.40-44.40%) in comparison to on national
susceptible genotype Varuna. As a result, these
genotypes exhibited greater partial resistance or slowed
blighting. Therefor, the two genotypes could possibly
serve as the source for horizontal resistance.

Transfer of horizontal resistance against Alternria can
be a bit tricky because of polygenic background of the
resistance (additive and dominant gene interactions),
strong cross-incompatibility, and differences in ploidy
between members of Brassicaceae family. Also application
of advanced in vitro techniques like, somatic
hybridization, embryo and ovary rescue, or protoplast
fusion makes the process much more complex.

Structural barriers

In Brassica species, epicuticular wax (cvs. Candle, Tobin,
Altex, Midas, Tower), a small number of stomatal
apertures (cvs. Tower, RC-781), and a low number and
narrow stomatal aperture (cvs. Tower, RC-781) confer

resistance to Alternaria infection (Saharan and Kadian,
1983b; Conn et al., 1984; Tewari, 1991b). The species B.
napus, B. carinata and B. alba are relatively less sensitive
to Alternaria blight as they have more epicuticular wax
than B. rapa and B. juncea (Conn et al., 1984; Tewari,
1986).  Intolerant mustard genotypes had increased levels
of phenolic chemicals, polyphenol oxidase activation, and
catalase activity (Gupta et al., 1990). Plant breeding has
been credited with a variety of high-yielding and stress-
tolerant rapeseed-mustard cultivars, for example, high
quantities of epicuticular wax have been observed in the
progeny of interspecific crosses
between B. napus and B. juncea as a result these
progenies are less sensitive to Alternaria blight (Singh
et al., 1999). However, where no donor germplasm source
is available, genetic engineering-mediated interferences
are required in rapeseed-mustard crop improvement,
notably for features like Alternaria blight resistance.

Biochemical barriers

After being exposed to Alternaria, phytoalexins were
elicited and accumulated in crucifers, and their function
in disease resistance was established (Verma and Saharan,
1994). A. brassicae has a calcium sequestration property
that can be utilized to improve rapeseed resistance to
this disease by applying calcium compounds to the soil
or to the leaves. (Tewari, 1991a, b). Resistance to Alternaria
blight in mustard has been found to be associated with
the development of secondary metabolites like
glucosinolates and phytoalexins (Verma and Saharan,
1994; Atwal et al., 2003; Mathpal et al., 2011; Sharma et
al., 2010; Doughty et al., 1996; Jung et al., 2002). Several
types of biochemical changes which include the phenolic
level were found to be important in the investigation of
resistance mechanisms (Arora and Wagle, 1985; Meena
et al., 2008). For the proper management of Alternaria
blight in mustard, Mamgain et al. (2019) discovered the
possible function of chemical elicitors, primarily salicylic
acid, in inducing systemic resistance.

Molecular basis of host resistance

On the molecular basis, plant resistance is generally
achieved either via interfering with the pathogen-derived
effectors or elicitation of defense response. In recent
years, great progress has been made related to the
molecular basis underlying host-pathogen interactions.
 Resistance in Arabidopsis thaliana has been widely
studied and is thought to be mediated by GLIP1 and
ethylene signaling. (Oh et al., 2005). Chitinase modifying
proteins (cmps) are common proteases released by the
fungal pathogen to inhibit the activity of chitinase
produced by the host in response to pathogen attack. In
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crucifers, it has been observed that fungalysin (cmp
belonging to the fungalysin class of protease) activity is
inhibited, therefore plant resistance to numerous fungal
diseases can emerge in cruciferous hosts (Naumann and
Wicklow, 2013). B. juncea transformed with chitinase gene
tagged with over expressing promoters 35S CaMV
produced defense response by destroying the cell walls
of invading fungi in plants (Mondal et al., 2003). The
defense mechanisms of B. juncea against Alternaria
pathogenesis are aided by increased levels of PAL, PPO,
and peroxidase (Parihar et al., 2012). Treatment with â–
aminobutyric acid results in an appropriate equilibrium
of oxidants and antioxidants, allowing B. carinata to
display resistance against A. brassicae by preventing
pathogen entry during the early phases of colonization
(Chavan et al., 2013). Zeatin, a cytokinin, boosts plant
immunity by increasing MAPK-4 levels and
counteracting the effects of A. brassicae (Marmath et
al., 2013b). Transgenic expression of hevein, the rubber
tree lectin, in B. juncea cv. RLM-198 confers defense
against A. brassicae (Kanrar et al., 2002), â–amino-butyric
acid pre- treatment of B. juncea plants induces A.
brassicae resistance mediated through an enhanced

expression of pathogenesis related protein genes,
independent of SA and JA accumulation (Kamble and
Bhargava, 2007). Brassica homologs of the hypersensitive
response gene (hsr 203J) play an essential role in
differential defensive response against A. brassicaceae
(Mishra et al., 2010). The genome of A. brassicae has
been assembled in a highly contiguous manner and
sequenced using Nanopore MinION sequencing with an
N50 of 2.98 Mb, resulting in nine complete chromosome-
level sequences. A new study has added to the existing
genomic resources for the Alternaria genus, allowing
for more research into the mechanisms driving the
pathogenicity of this important necrotrophic pathogen.
(Rajarammohan, 2019).

B. napus genome has been effectively integrated with
the cDNA expressing AMP1, which is an antimicrobial
peptide isolated from Pinus monticola with a high
cysteine content. (Verma et al., 2012). The in-planta
expression gives higher protection to B. napus against
A. brassicae. In transgenic B. juncea, a combined
expression of barley class II chitinase and Type I
ribosome-inactivating protein resulted in resistance

Table 3: Resistance genes/ QTLs identified against Alternaria brassicae and A. brassicicola causing Alternaria blight.

Gene (s) Host species Pathogen Reference

RtAbeCvG2-1, RtAbeCZ5-1 Arabidopsis thaliana A. brassicae Rajarammohan et al. (2017)
Hevein (chitin binding B. juncea cv. RLM 198 A. brassicae Kanrar et al. (2002)
lectin protein)
Chitinase B. juncea A. brassicae Mondal et al. (2003), Bashir et al.

(2015), Munir et al. (2016), Rawat et
al. (2017)

Osmotin B. juncea A. brassicae Taj et al. (2004)
Osmotin-ferritin B. juncea cv. Pusa Jaikisan A. brassicae Nirupa et al. (2007)
MSRA1 B. juncea cv. Varuna A. brassicae Rustagi et al. (2014)
lectin B. juncea cv. Varuna A. brassicae Kumar et al. (2015)
NPR1 B. juncea cv. Varuna A. brassicae Ali et al. (2017)
MPK3 B. juncea A. brassicae Tasleem et al. (2017)
BAR and neo B. napus A. brassicae De Block et al. (1989)
Class II chitinase Hordeum vulgare A. brassicae Chikara et al. (2012)
(AAA56786) gene and type I
ribosome inactivating protein
(RIP; AAA32951)
PmAMP1 Pinus monticola A. brassicae Verma et al. (2012)
Glucanase Solanum lycopersicum A. brassicae Mondal et al. (2007)
NHL10, HCHIB and XLG2 A. thaliana A. brassicicola Pathak et al. (2020)
PR-1, PR-2, PR-3, NPR-1, B. juncea and Synapsis alba A. brassicicola Nayanakantha et al. (2016)
PDF1.2
PR-1 S. alba A. brassicicola Mazumder et al. (2013)
endochitinase gene ‘ech42’ Trichoderma virens A. brassicae and Kamble et al. (2016)

A. brassicicola
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against A. brassicae (Chhikara et al., 2012). Exposure to
the brassicaceous defensive metabolites camalexin and
allyl-isothiocyanate elicited transcriptional responses in
A. brassicicola (Sellam et al., 2007).

Certain effector proteins have been proven to play a part
in studies, but the majority has yet to be defined, and
their molecular targets and functions remain unclear. In
the proposed gene-for-gene model, the majority of the
effectors/avirulence genes have yet to be found. Mondal
et al. (2003, 2007) identified antifungal genes for A.
brassicae resistance. Brassica genes such as class II
chitinase (AAA56786), type I ribosome-inactivating
protein (RIP; AAA32951), and tomato glucanase provide
better resistance to Brassica lines against A. brassicae
(Table 3).

Disease tolerance

The disease stress tolerance index (DSTI) was
discovered to be a useful selection criterion for
evaluating the disease stress tolerance and yield
potential of mustard genotypes. The genotypes Rajat,
Kranti and RH-781 under normal sown, and Rajat, RL-
1359 and Kranti under late sown conditions, performed
with uniform superiority under both non-disease and
disease-stress environments (Saharan et al., 2015). Yield
potential in a controlled environment (Yp) was found to
be significantly and positively linked with yield in a
disease-stressed environment (Ys). Under normal sown
and non-disease stress conditions (Yp), potential yield,
mean productivity (MP), disease tolerance (TOL),
geometric mean productivity (GMP), and disease stress
tolerance index (DSTI) all demonstrated a significant
positive relationship with yield under disease stress
conditions (Ys) (Gupta et al., 2002).

Disease Management

To control Alternaria epidemics of Brassica crops, it is
advised to select tolerant/resistant cultivars, use
chemicals/bioagents at the appropriate time with adequate
foliage coverage, use of clean, bold, healthy, and treated
seeds of recommended cultivars, long crop rotation (3-4
years), sanitation, weed control, shallow (2 cm depth)
planting at the recommended time, use of balanced
nutrients (80 kg/ha N, 40 kg/ha P, 40 k/ha K), proper plant
density (45 x 20 cm), drainage in the field, and plant debris
management, and educate farmers about the necessity of
these techniques. (Gupta et al., 2018). According to Meena
et al. (2015), soil application of nutrients such as
Potassium (K) + Zinc Sulphate (ZnSO

4
) + Copper

Sulphate (CuSO
4
) + Sulphur + foliar spray (FS) of

Mancozeb + carbendazim fungicides and lower leaf

removal at 40 days after sowing + FS of Ridomil, reduced
the maximum Alternaria blight severity and resulted in
higher seed yields.

Managing seed-borne inoculum using a hot water
treatment at 50°C for 20 minutes was found to be highly
efficient without impacting seed germination (Randhawa
and Aulakh, 1984). To manage Alternaria seed-borne
disease, a variety of pesticides and bioagents have been
suggested (Verma and Saharan, 1994; Vannacci and
Harman, 1987; Latif et al., 2006). In-vitro and in-vivo
testing of a wide range of molecules against Alternaria
species has revealed that they are very successful in
managing the disease in the field and boosting yield. The
number of sprays, optimum dosages, optimal crop growth
stage, spraying time, compatibility with insecticides,
residual toxicity, persistent nature, spray intervals, and
cost-benefit ratio of the most efficient fungicides have all
been determined (Verma and Saharan, 1994; Singh and
Singh, 2005; Meena et al., 2004; Khan et al., 2007; Mondal
et al., 2007; Saharan, 1991, 1992; Marshall and Haris, 1984;
Bonin and Fratczak, 1987; Brazauskiene and Peteraitiene,
2004; Davies et al., 1986). The indiscriminate use of
excessive dosages of fungicides to a crop’s pollen biology
can have a negative impact on seed output (Williams et
al., 1987; Jain et al., 2000). Iprodione, procymidone, and
fludioxonil, among other fungicides, have exhibited
resistance to isolates of A. brassicicola, which may alter
their efficacy in managing the disease in the field. (Huang
and Levy, 1995; Iacomi-Vasilescu et al., 2004). For the
management of Alternaria infections of crucifers, several
plant extracts and biocontrol agents exhibit efficacy
comparable to fungicides, as well as superior yields
(Meena et al., 2008, 2013). In a few selected host-pathogen
systems, antagonistic bio-control mechanisms have been
investigated. Biocontrol agents such as Trichoderma
harzianum, Pseudomonas fluorescens, and Bacillus
subtilis cause a variety of biochemical alterations in B.
juncea to trigger plant defense response against
pathogens (Verma and Saharan, 1994; White et al., 1990;
Tsuneda and Skoropad, 1980; Danielsson et al., 2006;
Sharma et al., 2010). The use of resistant cultivars is the
simplest, most cost-effective, environmentally beneficial,
and safest method of plant disease management. However,
efforts are being done around the world to create resistant
crucifer cultivars to combat black spot disease (Verma
and Saharan, 1994). Incorporation of all plant disease
management approaches including cultural, chemical,
biological, host resistance; biotechnological/genetic
engineering is the best way to deal with black spot disease
of crucifers (Verma and Saharan, 1994; Saharan and Mehta,
2002; Kolte, 2005; Mehta, 2014)
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Conclusion and Future Perspectives

Intensive crop cultivation has resulted in the
reproduction, build-up, and dissemination of Alternaria
species on crucifers in the locations where these crops
are produced with the lack of host resistance. The primary
causes of the surge in the inoculum of pathogenic
Alternaria species are due to the lack of genetic sources
of resistance, cultivation of high yielding susceptible
cultivars with high plant density, irrigation along with
high nitrogenous fertilizer dosages, adjacent areas under
monoculture, staggered sowing dates, poor weed
management, and poor plant protection strategies.
According to the information presented in this review on
Alternaria diseases of crucifers, some gaps and
bottlenecks still exist in our comprehensive understanding
of various dimensions of the Alternaria-Brassica
pathosystem (Figure 4) and should be resolved on a
priority basis in areas of crucifer production.

efforts could be used to investigate how different
“Disease Prediction Models” (geo-phytopathological,
bioclimatic, simulation system analysis etc.) can help
design an effective disease control plan. Identification
and standardization of host differentials is a necessary
precondition for collecting useful data on races and
pathotypes. This is one of the high-priority areas of
investigation. Uniform designation and nomenclature of
pathotypes with international acceptance is an urgent
need. In Alternaria spp. virulent and avirulent gene(s),
as well as QTLs/genes governing resistance in the host,
may also be identified. A very little information is available
on genetic sources of resistance, nature, mechanism, and
inheritance of resistance. Although the key genes for
resistance to Alternaria diseases are unknown, the
possibility of minor genes/horizontal resistance,
tolerance, and gradual blighting should be explored. To
transfer the resistant genes from distantly related natural
sources, the feasibility of induced resistance as well as
genetic engineering procedures can be used.
Identification and sequencing of resistant genes along
with identification of suitable gene combinations may be
explored and taken up. Hybrids and GM cultivars with
multiple disease resistance have to be explored for the
sustainability of edible oil in India (Figure 4).
Characterization of secondary metabolite biosynthetic
genes, as well as signal transduction and its role in
pathogenicity and fungal development, as well as
disruption of Aso 1, a gene required for anastomosis and
required for Alternaria to become pathogenic, are some
of the important and useful areas that must be
investigated further. Because there is a lot of genetic
heterogeneity in related and distantly related crucifers all
over the world, exploitation of morphological, structural,
and biochemical foundations of resistance requires in-
depth research.

Comparative research on all aspects of host-parasite
interaction in crucifers with all four Alternaria species
should yield some useful insights for disease management.
Some relevant information on chemical control of several
Alternaria diseases is available; however, much more is
needed to build a feasible disease control strategy in the
field. Efforts should also be made to find low-cost, high-
effective compounds that can provide cost-effective
disease control. It is necessary to identify the active
ingredient in plant extracts. Insecticides should be
included in integrated pest and disease management
systems because the role of insects such as aphids (viral
transmission) and flea beetles (transmission of A.
brassicicola to cabbage) are duly important. Microbial
antagonists should be investigated for the treatment of
Alternaria infections in rapeseed-mustard. Seed

Fig. 4: Scheme showing genes/ QTLs from different
sources and their mode of actions conferring black spot
resistance/ tolerance for the sustainability in edible
oilseed crops

The factors that influence disease onset and progression
are not completely understood. A better understanding
of numerous epidemiological elements will aid in the
development of methods to slow the spread of these
dangerous diseases. By computing disease progression
at regular intervals, multi-location trials with staggered
planting dates could be useful in assessing disease
development in connection to the environment. These



80 Journal of Oilseed Brassica, 13 (2) July, 2022

treatments using Trichoderma, Gliocladium, Penicillium,
and Streptomyces species should be explored further in
the field to evaluate their efficacy and cost-effectiveness.
Similarly, management of this pathogen by foliar
applications of Streptomyces rochei, S. higroscopicus,
S. arabicus, and Nectria inventa should also be explored
under varied field conditions.

More R-gene cloning work in Brassica will help us to better
understand the plant defense system, and provide the
information to exploit novel R-genes for breeding
objectives in a much effective and quick manner. Brassica
genome sequencing will lead to fresh discoveries and
understandings about the genetic links between and within
Brassicaceae members. Although hybridization between
divergent groups in the Brassicaceae family, which
contains a large number of R-genes, is already possible,
particularly in India, this is an area with a lot of future
potentials, as these methodologies become more widely
adopted and rates of success with wide-hybridization
events are quite imperative. However, the resistance
resources in Brassica species are limited and the species

in the crop wild relatives of Brassica, such as B. incana,
Sinapis alba, Diplotaxis erucoides, D. catholica, B. cretica
(C genome), and B. fruticulosa (B genome), as well as its
close relatives could be used to facilitate resistance gene
exchanges in the breeding programs. The development of
introgression lines from the wild and related species to the
cultivated species is one of the strategies to transfer the
resistance gene(s) for the Alternaria blight which can be
speeded up by using the molecular biology tools and
techniques for developing the resistant cultivars. Within
the Brassica genus, embryo rescue, reciprocal crossing,
and marker-assisted selection (MAS) is commonly used
for interspecies crossing. To transfer and use the resistance
contained in the A and B genomes, interspecies
hybridization must be explored. The new resistant
germplasms created in such investigations will be useful
in future Brassica crop breeding improvement projects.
MAS allows us to stack R alleles for multiple diseases and
create multi-resistant cultivars utilizing a large number of
genetic markers. The breeding circle has been substantially
shortened alongwith the use of MAS in conjunction with
other techniques such as hybridization and microspore

Fig. 5: A holistic approach to the management of Brassica against Alternaria blight disease
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culture. For the development of resistant cultivars, the
collaboration between plant breeders, molecular biologists
and plant pathologists is highly essential.

In dealing with biological systems, not one strategy or
approach could be both effective and cost-efficient. To
effectively manage the disease, all strategies of plant
disease management, such as diagnostics, forewarning,
chemical/biological/cultural control methods, host
resistance, and genetic engineering techniques must be
combined in a unified manner to bring holistic management
of this disease for the farming community (Figure 5).

Moreover, the latest molecular and omics methods, such
as transcriptomics, proteomics, and metabolomics, open
up new avenues for mining genes in the resistance-
regulating network, which could be used either directly
in resistance breeding or indirectly in pre-breeding studies
to better understand Brassica–pathogen interactions. In
addition, the sequenced Brassica accessions do not
contain all R-genes due to variations between individuals,
whereas, the establishment of the pan-genomics could
facilitate gene mining from a wider platform. The identified
genetic resources of Brassica and its wild relatives can
be exploited to the fullest potential to develop a mapping
population to map genomic regions conferring the
resistance to Alternaria blight in crucifers.

The reported genes/QTLs can be validated in the
identified accessions/cultivars. Further, the fine mapping
would help in the cloning of genes that would help in
understanding the molecular mechanism of resistance.
The identified genes/QTLs can be introgressed in the
susceptible but agronomically superior varieties through
marker-assisted selection. There is no doubt about the
pivotal role of host resistance in disease management,
however, the sustainability in Brassica cultivation with
higher productivity profitability and production of quality
seed could be achieved through combining all the disease
management strategies in a holistic way.
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